Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Tao Zeng* and Li-Gong Chen

School of Chemical Engineering and
Technology, Tianjin University, Tianjin 300072, People's Republic of China

Correspondence e-mail: zengtaotj@126.com

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
Disorder in main residue
R factor $=0.050$
$w R$ factor $=0.149$
Data-to-parameter ratio $=17.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2,6-Di-tert-butyl-4-\{[N-(4,6-dichloro-1,3,5-triazin-2-yl)propylamino]methyl\}phenol

The title compound, $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$, contains a sterically hindered phenol group. The dihedral angle between the two rings is $72.3(1)^{\circ}$. The propyl chain is disordered over two orientations.

Comment

Hindered phenol antioxidants are widely used in polymers and lubricants since they can protect polymers by increasing both their process stability and long-term stability against oxidative degradation (Yamazaki \& Seguchi, 1997). Furthermore, amino derivatives of 2,4,6-trichloro-1,3,5-triazine are widely used as starting materials for many products, including drugs and light stabilizers (Mathias \& Simanek, 1994; Manasek \& Hrdlovik, 1990).

(I)

The title compound, (I), has been synthesied from 2,6-di-tert-butyl-4-[(propylamino)methyl]phenol and 2,4,6-trichloro-1,3,5-triazine. The bond length and angles are normal (Allen et al., 1987) and compare well with those in a similar compound, viz. N-(4,6-dichloro-1,3,5-triazin-2-yl)aniline (Zeng et al., 2005). The dihedral angle between the triazine ring and the benzene ring is $72.3(1)^{\circ}$. The propyl chain was found to be disordered over two orientations. The molecular structure is stabilized by four intramolecular hydrogen bonds (Table 1 and Fig. 1). However, atom H 1 of the phenolic group is not involved in hydrogen bonding, presumably because of the steric hindrance of the tert-butyl groups.

Experimental

2,6-Di-tert-butyl-4-[(propylamino)methyl]phenol was prepared according to the method that we have reported in an earlier paper (Shu et al., 2005). 2,4,6-Trichloro-1,3,5-triazine ($4.61 \mathrm{~g}, 0.025 \mathrm{~mol}$) and 2,6-di-tert-butyl-4-[(propylamino)methyl]phenol $\quad(6.8 \mathrm{~g}, \quad 0.025 \mathrm{~mol})$ were added to acetone (50 ml) and stirred at 273 K for 2 h . A solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(1.38 \mathrm{~g}, 0.013 \mathrm{~mol})$ in water (10 ml) was then added dropwise over a period of 1 h . The reaction mixture was stirred at $273-278 \mathrm{~K}$ for a further 3 h . The precipitate was filtered off and the acetone was evaporated under reduced pressure. The title compound $(9.89 \mathrm{~g})$ was obtained in a yield of 93%. Suitable crystals (m.p. 377-

379 K) were obtained by slow evaporation of a solution in a mixture of dichloromethane and ethyl acetate ($6: 1 \mathrm{v} / v$).

Crystal data

$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}$	$Z=4$
$M_{r}=425.39$	$D_{x}=1.200 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=9.9134(17) \AA$	$\mu=0.29 \mathrm{~mm}^{-1}$
$b=19.373(3) \AA$	$T=294(2) \mathrm{K}$
$c=12.378(2) \AA$	Block, colourless
$\beta=98.037(3)^{\circ}$	$0.54 \times 0.40 \times 0.38 \mathrm{~mm}$
$V=2353.9(7) \AA^{3}$	

Data collection

Bruker SMART 1000 CCD areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)

$$
T_{\min }=0.840, T_{\max }=0.895
$$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.150$
$S=1.00$
4796 reflections
281 parameters
H -atom parameters constrained

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{\mathrm{o}}\right)+(0.0569 P)^{2}\right. \\
+0.7546 P] \\
\text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.26 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Extinction correction: SHELXL97 Extinction coefficient: 0.0197 (15)

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C12-H12B $\cdots \mathrm{O} 1$	0.96	2.32	$2.974(4)$	125
C14-H14B \cdots O1	0.96	2.47	$3.077(4)$	121
C16-H16B \cdots O1	0.96	2.40	$3.026(4)$	122
C17-H17B \cdots O1	0.96	2.39	$3.001(4)$	121

H1, attached to O1, was located in a difference Fourier map; it was then constrained to ride on O 1 with $\mathrm{O}-\mathrm{H}=1.02 \AA$ and $U_{\text {iso }}(\mathrm{H})=$ $0.11 \AA^{2}$. All other H atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93-0.97 \AA ; U_{\text {iso }}(\mathrm{H})=x U_{\text {eq }}$ (carrier atom), where $x=1.5$ for methyl H and 1.2 for all other H atoms. Atoms C20, C21 and the H atoms attached to C19, C20 and C21 are disordered over two orientations; the site-occupancy factors refined to 0.603 (7) and 0.397 (7).

Figure 1
A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. Both disorder components are shown. Dashed lines indicate the intramolecular hydrogen bonds.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1997). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Manasek, Z. \& Hrdlovik, P. (1990). Eur. Patent EP 0377324.
Mathias, P. J. \& Simanek, E. E. (1994). J. Am. Chem. Soc. 116, 4326-4340.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Shu, X.-G., Zeng, T., Chen, L.-G., Yan, F.-Y. \& Zhang, Y.-C. (2005). Acta Cryst. E61, o4192-o4194.
Yamazaki, T. \& Seguchi, T. (1997). J. Polym. Sci. A Polym. Chem. 35, 24312439.

Zeng, T., Dong, C.-M. \& Shu, X.-G. (2005). Acta Cryst. E61, o2334-o2335.

[^0]: © 2006 International Union of Crystallography All rights reserved

